CS152: Computer Systems Architecture
The Hardware/Software Interface

(1
>

Sang-Woo Jun

Winter 2021
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Course outline

d Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly programming and conventions

Eight great ideas

(1 Design for Moore’s Law

today
Use abstraction to simplify design >

Make the common case fast

Performance via parallelism
Performance via pipelining

Performance via prediction

Hierarchy of memories

D OO0 000

Dependability via redundancy

MOORE'S LAW

~_-

COMMON CASE FAST

|

PELINI

NG

A
AR
AR

HIERARCHY

DEPENDABILITY

Great idea:
Use abstraction to simplify design

J Abstraction helps us deal with complexity by hiding lower-level detail
o One of the most fundamental tools in computer science!

o Examples:
* Application Programming Interface (API),
e System calls,
* Application Binary Interface (ABI),
* Instruction-Set Architecture

Below your program

J Application software
o Written in high-level language (typically)

J System software

o Compiler: translates HLL code to machine code

o Operating System: service code
e Handling input/output
* Managing memory and storage
e Scheduling tasks & sharing resources

. Hardware
o Processor, memory, I/O controllers

\,\oaﬂo nsS So f[we/'
Q

The Instruction Set Architecture

d An Instruction-Set Architecture (ISA) is the abstraction between the
software and processor hardware

o The ‘Hardware/Software Interface’
o Different from ‘Microarchitecture’, which is how the ISA is implemented

J A consistant ISA allows software to run on different machines of the
same architecture

o e.g., x86 across Intel, AMD, and various speed and power ratings

Levels of program code

d High-level language

o Level of abstraction closer to problem domain

o Provides for productivity and portability

d Assembly language

o Textual representation of instructions
(J Hardware representation

o Binary digits (bits)

o Encoded instructions and data

Instruction Set Architecture (ISA) is
the agreement on what this will do

—

High-level
language
program

(in C)

Assembly
language
program

(for RISC-V)

Binary machine
language
program

(for RISC-V)

swap(int v[1, int k)
{int temp;
temp = v[k];
vik]l = v[k+1]1;
vik+1] = temp;
}

swap:
s11i x6, x11, 3
add x6., x10, xb

1d x5, 0(x6)
1d x7, 8(x6)
sd x7, 0(x6)
sd x5, 8(x6)
jalr x0, 0(x1)

y

00000000001101011001001100010011
00000000011001010000001100110011
00000000000000110011001010000011
00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

A RISC-V Example ("0O0A9 8933")

d This four-byte binary value will instruct a RISC-V CPU to perform
o add values in registers x19 x10, and store it in x18
o regardless of processor speed, internal implementation, or chip designer

add x18,x19,x10

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rsl | funct3 rd opcode |
7 5 5 3 5 T

0000000 | 01010 | 10011 000 10010 | 0110011
ADD rs2=10 rs1=19 ADD rd=18 Reg-Reg OP

Source: Yuanqging Cheng, “Great Ideas in Computer Architecture RISC-V Instruction Formats”

Some history of ISA

d Early mainframes did not have a concept of ISAs (early 1960s)
o Each new system had different hardware-software interfaces
o Software for each machine needed to be re-built

d IBM System/360 (1964) introduced the concept of ISAs
o Same ISA shared across five different processor designs (various cost!)
o Same OS, software can be run on all
o Extremely successful!

] Aside: Intel x86 architecture introduced in 1978

o Strict backwards compatibility maintained even now (the A20line... ®)
o Attempted clean-slate redesign multiple times but failed (iAPX 432, EPIC, ...)

IBM System/360 Model 20 CPU

Source: Ben Franske, Wikipedia

CS152: Computer Systems Architecture
What Makes a "Good” ISA”?

(1
>

Sang-Woo Jun

Winter 2021
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

What makes a ‘good’ ISA?

(d Computer architecture is a complicated art...
o No one design method leads to a ‘best’ computer
o Subject to workloads, use patterns, criterion, operation environment, ...

J Important criteria: Given the same restrictions,
o High performance!
o Power efficiency
o Low cost
o ..

d May depend on target applications
o E.g., Apple knows (and cares) more about its software than Intel

What does it mean to be high-performance?

1 In the 90s, CPUs used to compete with clock speed
o “My 166 MHz processor was faster than your 100 MHz processor!”
o Not very representative between different architectures
o 2 GHz processor may require 5 instructions to do what 1 GHz one needs only 2

d Let’s define performance = 1/execution time

J Example: time taken to run a program
o 10son A, 15s0on B

o Execution TimeB / Execution TimeA
=15s/10s=1.5

o So Ais 1.5 times faster than B

Performance, /Performance,
= Execution time, /Execution time, =n

Measuring execution time

J Elapsed time
o Total response time, including all aspects
* Processing, I/0O, OS overhead, idle time
o Determines system performance

J CPU time (Focus here for now)
o Time spent processing a given job
* Discounts I/O time, other jobs’ shares
o Comprises user CPU time and system CPU time
o Different programs are affected differently by CPU and system performance

CPU clocking

(J Operation of digital hardware governed by a constant-rate clock

Clock (cycles)

Data transfer
and computation < X X >
Update state O O O

J Clock period: duration of a clock cycle
o e.g., 250ps =0.25ns = 250x107*%s

1 Clock frequency (rate): cycles per second
o e.g., 4.0GHz = 4000MHz = 4.0x10°Hz

CPU time

J Performance improved by
o Reducing number of clock cycles

o Increasing clock rate
o Hardware designer must often trade off clock rate against cycle count

CPUTime = CPUClock Cycles xClock Cycle Time

_ CPUCIock Cycles
Clock Rate

Instruction count and CPI

d Instruction Count for a program
o Determined by program, ISA and compiler

J Average cycles per instruction
o Determined by CPU hardware

o If different instructions have different CPI
* Average CPI affected by instruction mix

Clock Cycles =Instructio n Count x Cycles per Instructio n
CPU Time =Instructio n Count x CPIx Clock Cycle Time

B Instructio n Count x CPI
Clock Rate

CPIl example

J Computer A: Cycle Time = 250ps, CPI = 2.0
(J Computer B: Cycle Time = 500ps, CPl = 1.2
J Same ISA

CPU TimeA = Instructio n Count x CPIA x Cycle TimeA

=1x2.0x250ps =1x500ps «— | Ais faster...

CPU TimeB = Instructio n Count x CPIB x Cycle TimeB
=1x1.2 x500ps =1x600ps

CPU TimeB _1x600ps _

_ = 1.2 «
CPU Time | x 500ps

...by this much

A

CPI In more detall

 If different instruction classes take different numbers of cycles

Clock Cycles = » (CPI; xInstructio n Count;)
=1

*Not always true with michroarchitectural tricks

d Weighted average CPI (Pipelining, superscalar, ...)
cp|—_ ClockCycles _ <+(~p, , Instructio n Count,
Instructio nCount ‘3 " Instructio n Count
~ YT — — - -
! Relative frequency

Dynamic profiling!

Performance summary

J Performance depends on
o Algorithm: affects Instruction count, ,,ciuy cpn
o Programming language: affects Instruction count, o, cpi)
o Compiler: affects Instruction count, CPI
o Instruction set architecture: affects Instruction count, CPI, Clock speed

CPU Time — Instructions Clock cycles Seconds

X
Program Instruction Clock cycle

A good ISA: Low instruction count, Low CPI, High clock speed

Some goals for a good ISA

Low CPI
Low instruction count High clock speed
Each instruction should do Each instruction should be
more work simpler

How do we reconcile?

CPI

Real-world examples:
Intel 17 and ARM Cortex-A53

3- ___
Stalls, misspeculation
2.67
m |deal CPI
o e T S T e S st = S
2.12
2_ __
B bl
1.23
102 106
1_ __
0.74 0.77 o
059 061 0%°
0.5_-0_44__ PN B BN M B P e BN S e B
NiEEEEEEEEEERI
C & & P & O} & &K O
(b{\@ qsob‘ @é\ ,QGQ ~o'1>Q 60@ ¥ 60@ ® 9 QQ"Q ¢
» ¥ ¢ L > ® &
¥ R +©

CPI of Intel i7 920 on SPEC2006 Benchmarks

10.00

9.00

8.00

B Memory hierarchy stalls

Pipeline stalls

M |deal CPI

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00 -

0.97 - e wm w= N ™~
_lllllll

o8 0y T 1= 138 1.39 . .
] E E

bmk xalancb k

2
8
g
c
]
2
€
= |
g
g
3
-
w
®
2
S
1
°
o
8

CPI of ARM Cortex-A53 on SPEC2006 Benchmarks

CS152: Computer Systems Architecture
Some ISA Classifications

(1
>

Sang-Woo Jun

Winter 2021
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Eight great ideas

(1 Design for Moore’s Law
!I Use abstraction to simplify design

dd Make the common case fast >td
oday

(J Performance via parallelism
d Performance via pipelining

d Performance via prediction

J Hierarchy of memories

J Dependability via redundancy

MOORE'S LAW

~_-

COMMON CASE FAST

|

PELINI

NG

A
AR
AR

HIERARCHY

DEPENDABILITY

The RISC/CISC Classification

(J Reduced Instruction-Set Computer (RISC)
o Precise definition is debated

o Small number of more general instructions

e RISC-V base instruction set has only dozens of instructions

 Memory load/stores not mixed with computation operations
(Different instructions for load from memory, perform computation in register)

» Often fixed-width encoding (4 bytes for base RISC-V)

o Complex operations implemented by composing general ones
e Compilers try their best!

o RISC-V, ARM (Advanced RISC Machines),
MIPS (Microprocessor without Interlocked Pipelined Stages),
SPARC, ...

The RISC/CISC Classification

(d Complex Instruction-Set Computer (CISC)
o Precise definition is debated (Not RISC?)

o Many, complex instructions
* Various memory access modes per instruction (load from memory? register? etc)
* Typically variable-length encoding per instruction
* Modern x86 has thousands!

o Intel x86,
IBM z/Architecture,

The RISC/CISC Classification

J RISC paradigm is winning out
o Simpler design allows faster clock

o Simpler design allows efficient microarchitectural techniques
e Superscalar, Out-of-order, ...

o Compilers very good at optimizing software

(d Most modern CISC processors have RISC internals
o CISCinstructions translated on-the-fly to RISC by the front-end hardware
o Added overhead from translation (silicon, power, performance, ...)

